Статистика

Экологические проблемы сбора и утилизации аккумуляторного лома

С экологической и технологической точек зрения, электрохимические технологии обладают рядом преимуществ по сравнению с пирометаллургическими. Товарными продуктами, получаемыми в процессе металлургического передела, являются свинцово-сурмянистый сплав марок ССуА (ГОСТ 1292-81) и УС-1 (ТУ87,РК00200928-98-98), свинец марки С2 (ГОСТ 3778-77), в то время как при электрохимической переработке возможно получение свинца марок С2-С1, так как металлы-примеси, содержат продукты электролиза либо выпадают в виде шлама, либо переходят в раствор электролита, а на катоде не осаждаются. Выход по продукту при пирометаллургической переработке составляет 50 — 70 %, при электрохимической — 75 — 90 %.

Все электрохимические технологии включают предварительную разделку аккумуляторных блоков на органическую и металлическую фракции, что исключает процесс сжигания органики и выделение образующихся в этом процессе вредных веществ.

Процесс электрохимической переработки сопровождается гораздо меньшими выбросами свинца в атмосферу: при металлургическом способе выброс свинца в виде пыли составляет 2 кг/т, при электрохимическом в виде аэрозоля — 0,01 кг/т.

Кроме того, переработка аккумуляторных пластин электрорафинированием (анодным растворением пластин с одновременным осаждением свинца на катоде) сопровождается очень малым выделением газообразных продуктов электролиза на аноде и катоде: кислород на аноде не выделяется, так как анод является растворимым, водород на катоде практически не выделяется из-за высокого выхода свинца по току. В связи с этим барботажный унос вредных веществ из электролита невелик. Например, удельные выбросы фтористых соединений (фтористого водорода и тетрафторида кремния) с поверхности кремнефтористоводородного электролита составляют 0,004 — 0,006 г/(с-м2) в зависимости от концентрации кремнефтористоводородной кислоты в электролите, что в 1,5 — 3 раза меньше, чем при свинцевании с нерастворимыми анодами.

Было определено, что выбросы газообразных загрязняющих веществ с поверхности электролита не зависят от электродной плотности тока при электролизе [5, 6], поэтому повышение скорости электролиза за счет увеличения электродной плотности тока приходит к снижению валовых выбросов загрязняющих веществ с поверхности электролита. Авторы статьи установили, что введение поверхностно-активных веществ (ПАВ), повышающих допустимую катодную, а следовательно, и рабочую плотность тока и скорость переработки, приводит не к уменьшению, а к повышению удельных выбросов газообразных загрязняющих веществ с поверхности электролита в единицу времени [6]. Так, введение в кремнефтористоводородный электролит анионактивных и неионогенных ПАВ (ССБ, желатина, зтиленгликоля), дающих хорошие результаты по повышению допустимой катодной плотности тока, приводит к повышению выбросов фторидов с поверхности электролита в 2 — 5 раз. Вместе с тем за счет ускорения процесса переработки путем увеличения электродной плотности тока валовые выбросы фторидов в таких электролитах снижаются в 1,5 — 2 раза.

Большинство электролитов, пригодных для переработки (кремнефтористоводородный, борфтористоводородный), являются достаточно ядовитыми, их пары отравляют воздух рабочей зоны. Однако некоторые исследователи, изучавшие процессы свинцевания в кремне-фтористоводороднъгх электролитах, установили, что выделение вредных веществ с поверхности электролита в процессе электролиза обусловлено его испарением, а также распадом кремнефтористоводородной кислоты, а не электрохимическими процессами [5, 6], поэтому снижение температуры электролита и повышение скорости переработки способствуют снижению валовых выбросов вредных веществ с его поверхности. В последнее время сообщается об экспериментах по апробированию сульфаминового электролита, однако допустимая катодная плотность тока в нем, а следовательно, и скорость переработки в 1,6 — 6 раз ниже, чем в борфтористоводородном и кремнефтористоводородном электролитах.

К недостаткам электрохимических технологий переработки можно отнести относительно низкую скорость процесса. Время растворения аккумуляторных пластин в зависимости от параметров электролиза составляет около суток. Повысить скорость электрохимической переработки можно двумя путями: за счет технологических (переработка пластин целиком без разделения на сульфатно-оксидную массу и металлические решетки; совмещение во времени стадий растворения и осаждения свинца путем переработки методом электрорафинирования, а не электроэкстракции) и технических решений (повышение скорости анодного растворения аккумуляторных пластин и осаждения свинца на катоде путем введения в электролитного перемешивания электролита, подбора оптимальной температуры, расстояния между анодом и катодом и т.д.). Так, электрорафинирование вместо электроэкстракции ускоряет процесс в 1,5 — 2 раза, подбор оптимального как с технологической, так и с экологической точек зрения состава электролита позволяет повысить скорость переработки в 2 — 2,5 раза.

Перейти на страницу: 1 2 3 4 5

Другие статьи по экологии

Отходы, образующиеся при производстве продукции, сточные воды, выбросы в атмосферу, методы их утилизации, переработки
Таблица № 3. Наименование отходов Куда складируются Перио-дичность образования Условия (метод) и место захоронения, обезврежив. утилизации ...

Глобальные проблемы современности экологическая проблема, сырьевой кризис
На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилос ...

Охрана атмосферного воздуха
Атмосферный воздух представляет собой элемент окружающей природной среды, жизненно важный для биологических организмов, включая людей, который служит защитой от космических излучений, поддер ...